Lycée pilote	Devoir de synthèse N° 3	M ^r T.Besbes
Gafsa	2 sciences (2 heures)	2005 /2006

Exercice 1: (7 points)

 $(O, \overline{i}, \overline{j})$ est un repère orthonormé du plan.

- 1- Construire la courbe (H) de la fonction f définie par $f(x) = \frac{-2}{x+1}$.
- 2- Soit la fonction g définie par $g(x) = \frac{3x+1}{x+1}$ et soit (C) sa courbe représentative selon le repère $(O, \overline{I}, \overline{J})$
 - a-Montrer que pour tout réel $x \in Dg$; on a $g(x) = 3 \frac{2}{x+1}$
- b- Construire (C)

0.5

1

1

l

1

0.5

0.5

0.5

0.5

0.5

1

0.5

0.5

- 3- Soit Δ la droite passant par I(-1; 3) et de coefficient -1
 - a- Ecrire une équation de Δ .
 - b- Déterminer les abscisses de points d'intersection de (C) et Δ .
 - c-Résoudre graphiquement l'inéquation : $\frac{2}{x+1} \langle x+1.$
- 4- Soit la fonction t définie par $t(x) = \frac{3x+1}{|x+1|}$
- a- Construire sa courbe (C') dans le même repère $(O, \overline{i}, \overline{j})$.
- b- Déterminer suivant les valeurs de m le nombre de solution de l'équation : t(x) = m.

Exercice 2: (3 points)

On donne un plan P , (C) un cercle de centre O et de diamètre [AB] et un point M de (C)

- Soit S un point de la perpendiculaire en A au plan P.

 1- a- Montrer que (MB) est perpendiculaire au plan (SAM).
 - b- En déduire que (SAM) et (SBM) sont perpendiculaires.
 - 2- a- Montrer que le triangle SMB est rectangle.
 - b- Soit I = S*B. Montrer que (OI) est l'axe du cercle (C).
 - 3- Soit J = M*B.
 - a-Montrer que (OIJ) est le plan médiateur de [MB].
 - b- Montrer que les plans (OIJ) et (SAM) sont perpendiculaires

Exercice 3: (4 points)

Dans un repère orthonormé $(O, \overline{i, j})$; on donne l'ensemble $(C) = \{ M(x, y) / x^2 + y^2 - 2y - 9 = 0 \}$

- 1- Montrer que (C) est un cercle. Préciser son centre I et son rayon R.
- 2- Soit la droite D: 2x-y-4 = 0. Calculer les coordonnées des points d'intersection A et B de (C) et D (A est le point d'ordonnée négative.)
- 3- a- Ecrire une équation cartésienne de la droite Δ perpendiculaire à D et passant par I. b- Calculer les coordonnées du point J ; intersection de D et Δ
- 4- Calculer sin AlJ; puis déduire AlJ.